Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N-(3,5-Di-tert-butyl-4-hydroxybenzyl)phthalimide

In the title compound, $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{3}$, the molecules are held together by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\pi-$ π stacking interactions.

Comment

3,5-Di-tert-butyl-4-hydroxybenzylamine is an important building block in the synthesis of sterically hindered phenols and their derivatives (Silin et al., 1999). Its precursor, N-(3,5-di-tert-butyl-4-hydroxybenzyl)phthalimide, (I), was synthesized from phthalimide and benzyl chloride in high yield. The crystal structures of related compounds have been reported by Zeng et al. (2005) and Shu et al. (2005).

(I)

The molecular structure of (I) (Fig. 1) shows that the phthalimide ring system is essentially planar, with a mean deviation of 0.011 (0) \AA. The dihedral angle between the N1/ $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 7 / \mathrm{C} 8$ and $\mathrm{C} 2-\mathrm{C} 7$ rings is $1.44(1)^{\circ}$. Selected bond lengths and angles for (I) are given in Table 1.

The molecular structure is stabilized by intramolecular $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2). In the crystal structure (Fig. 2), intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are also observed. Strong $\pi-\pi$ interactions exist between the aryl rings. The centroid-centroid separations of ring pairs are as follows: five-membered phthalimide rings, 3.9705 (18) $\left(\frac{1}{2}-y, \frac{1}{2}+x\right.$, $\left.-\frac{1}{4}+z\right)$ and $3.9708(18) \AA\left(-\frac{1}{2}+y, \frac{1}{2}-x, \frac{1}{4}+z\right)$; six- and fivemembered phthalimide rings, 3.5750 (17) $\left(\frac{1}{2}-y, \frac{1}{2}+x,-\frac{1}{4}+z\right)$ and $4.2920(18) \AA\left(-\frac{1}{2}+y, \frac{1}{2}-x, \frac{1}{4}+z\right)$, respectively; sixmembered phthalimide rings 3.9257 (17) $\AA\left(\frac{1}{2}-y, \frac{1}{2}+x,-\frac{1}{4}+z\right)$ and $\left(-\frac{1}{2}+y, \frac{1}{2}-x, \frac{1}{4}+z\right)$; phenol rings $4.5885(17) \AA(y, x$, $1-z)$.

Received 24 February 2006 Accepted 28 February 2006

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.038$
$w R$ factor $=0.106$
Data-to-parameter ratio $=9.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Experimental

The title compound was obtained by the reaction of phthalimide ($7.36 \mathrm{~g}, 0.05 \mathrm{~mol}$) with 3,5-di-tert-butyl-4-hydroxybenzyl chloride $(12.7 \mathrm{~g}, 0.05 \mathrm{~mol})$ in the presence of potassium carbonate $(6.90 \mathrm{~g}$, aqueous) in dimethylformamide (50 ml) for 2 h at ambient temperature. It was recrystallized from ethanol as a colourless solid (yield $18.15 \mathrm{~g}, 99 \%$, m.p. $439-440 \mathrm{~K}$).

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{3}$
$M_{r}=365.46$
Tetragonal, $P 4_{3} 2_{1} 2$
$a=17.1925$ (16) A
$c=13.7715$ (19) \AA
$V=4070.6$ (8) \AA^{3}
$Z=8$
$D_{x}=1.193 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5012
reflections
$\theta=2.2-24.4^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colourless
$0.26 \times 0.22 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.971, T_{\text {max }}=0.985$
23105 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.106$
$S=1.06$
2428 reflections
251 parameters
H -atom parameters constrained

2428 independent reflections
1640 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.057$
$\theta_{\text {max }}=26.5^{\circ}$
$h=-21 \rightarrow 17$
$k=-17 \rightarrow 21$
$l=-17 \rightarrow 16$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0391 P)^{2}\right. \\
& +1.0321 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}<0.001 \\
& \Delta \rho_{\max }=0.14 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\text {min }}=-0.18 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0033 \text { (5) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

O1-C1	$1.206(3)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.393(4)$
O2-C8	$1.203(3)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.403(3)$
$\mathrm{O} 3-\mathrm{C} 13$	$1.387(3)$	$\mathrm{N} 1-\mathrm{C} 9$	$1.461(4)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 8$	$111.4(2)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	$125.3(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 9$	$124.2(3)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$128.5(3)$
C8-N1-C9	$123.9(2)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$106.2(2)$
C8-N1-C1-O1	$177.8(3)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 8-\mathrm{O} 2$	$-178.6(3)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 1-\mathrm{O} 1$	$4.9(5)$	$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 8-\mathrm{O} 2$	$-5.7(5)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.88	2.51	$3.364(3)$	164
$\mathrm{C} 9-\mathrm{H} 9 B \cdots \mathrm{O} 1$	0.97	2.57	$2.921(4)$	101
C15-H15 $\cdots \mathrm{O} 2$	0.93	2.54	$3.219(4)$	130
$\mathrm{C}^{2} 7-\mathrm{H} 17 A \cdots 2^{\mathrm{ii}}$	0.96	2.57	$3.490(4)$	161
${\text { C22-H22A } \cdots \mathrm{O}^{\mathrm{i}}}^{\mathrm{i}}$	0.96	2.55	$3.223(4)$	127

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{3}{2},-z+\frac{1}{4}$; (ii) $y-\frac{1}{2},-x+\frac{3}{2}, z+\frac{1}{4}$.

Figure 1
View of the molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate intramolecular hydrogen bonds.

Figure 2
A packing diagram for (I). The molecules are held together by $\pi-\pi$ stacking interactions. Dashed lines indicate intermolecular hydrogen bonds.

H atoms were positioned geometrically and constrained to ride on their parent atoms $\left[\mathrm{C}-\mathrm{H}=0.93 \AA\right.$ for $\mathrm{C} s p^{2}-\mathrm{H}$ and $0.97 \AA$ for CH_{2} groups, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}) ; \mathrm{C}-\mathrm{H}=0.96 \AA$ for methyl groups and $0.88 \AA$ for $\mathrm{O}-\mathrm{H}$, with $\left.U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C}, \mathrm{O})\right]$. In the absence of significant anomalous dispersion effects, Friedel pairs were averaged.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

organic papers

SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shu, X.-G., Zeng, T., Chen, L.-G., Yan, F.-Y. \& Zhang, Y.-C. (2005). Acta Cryst. E61, o4192-o4194.
Silin, M. A., Kelarev, V. I., Abu-Ammar, V., Putkaradze, D. Kh. \& Golubeva, I. A. (1999). Pet. Chem. 40, 209-214.

Zeng, T., Shu, X.-G., Dong, C.-M. \& Chen, L.-G. (2005). Acta Cryst. E61, o2999-o3000.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

